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Lake & Yuen (1978) have suggested that in very steep wind waves the modulation- 
frequency of the wave amplitude may correspond to the frequency of the fastest- 
growing subharmonic instability of a uniform train of waves whose amplitude equals 
the mean wave amplitude 6. The approximate theory of Benjamin & Feir (1967) 
gives this frequency as (iik) fd, where k is the wavenumber andfd the frequency of the 
unperturbed waves. This expression applies strictly only to very small values of the 
wave steepness iik. 

More recently (Longuet-Higgins 1978) the present author calculated accurately 
all the normal-mode instabilities of steep gravity waves on deep water. In this note 
these calculations are used to determine the frequency of the fastest-growing sub- 
harmonic instabilities precisely. When compared with the experimental data of Lake 
& Huen, these frequencies show even closer agreement. 

1. Introduction 
In  the study of random seas, questions concerning the fluctuation in the height of 

the waves - for example, how many waves, on the average, are there in a wave group P - 
have important applications to naval architecture and ocean engineering, especially 
when we are concerned with nonlinear phenomena (such as ship slamming) stimulated 
by a resonant response to the waves. 

In the past such questions have been treated mainly by linear theories (Longuet- 
Higgins 1956; Goda 1970; Ewing 1973). Thus, there is a demonstratable relation 
between the group-length of a gaussian stochastic process and the ‘width’ of the 
corresponding frequency spectrum, suitably defined. Such linear theories do not 
predict any particular value for the width of the spectrum, but leave this as a matter 
either for measurement or to be estimated by wave-forecasting techniques. 

In very steep waves, however, the waves become non-gaussian, and the frequency 
spectrum, as ordinarily defined, becomes contaminated by the presence of second 
and higher harmonics which are phase-bound to the corresponding fundamental 
Fourier components. So the appropriate width of the spectrum tends to be over- 
estimated, when spectral moments are used. Against this, it  has appeared that the 
width of the main peak in the spectrum, under conditions of active wave generation, 
can be extremely narrow (Hasselmann et al. 1973). 

Now it is known (Benjamin & Feir 1967) that a uniform train of gravity waves of 
finite amplitude a in deep water is inherently unstable to certain subharmonic per- 
turbations. Benjamin & Feir represented these as side-bands, with radian frequencies 
cr f Au, where cr is the frequency of the fundamental and A u  a positive perturbation; 
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FIGURE 1. Sketch of the surface elevation 7 at a fixed point, 
as a function of the time t. 

and they showed that the side-bands would grow at the expense of the fundamental 
wave provided 

k being the fundamental wavenumber. Moreover, the most rapidly growing perturba- 
tion (of this type) has a frequency such that 

ACT/CT < 4 2  ak, (1.1) 

A v / a  = ak. (1.2) 

This interesting result was taken up by Lake & Yuen (1978) who suggested that the 
fluctuations of the wave envelope in a steep, irregular wave train might correspond to 
the most rapidly growing perturbations of a uniform wave train. In  support of this 
not unreasonable suggestion they measured the ratio of the modulation frequency 
f, to the dominant wave frequency fd of wind-waves in a short channel, with fetches up 
to 30 f t  and wind speeds up to 30 f t  s-l. Despite some scatter, f,/fd appeared to increase 
about linearly with mean wave steepness (see Lake & Yuen (1978) figure 13; also see 
figure 6 below). 

Now the theoretical results (1.1) and (1.2) are valid strictly only for small but finite 
values of ACT and ak. Recently the present author has calculated accurately the in- 
stabilities of deep-water gravity waves over the greater part of the range of wave 
steepness ak (Longuet-Higgins 1978). These calculations have been confirmed by an 
entirely different method (Longuet-Higgins & Cokelet 1978). The results show that the 
instabilities are of two distinct types: local instabilities, which lead directly to 
whitecapping, and subharmonic instabilities of the Benjamin-Feir type, which 
however are confined to the range 0 < ak < 0.36 approximately. It was shown that 
the relations (1.1) and (1.2) are valid only at the lower end of the range of ak. 

In  this note it will be shown that the results of Longuet-Higgins (1978) allow the 
frequency of the most rapidly growing subharmonic perturbation to be determined 
accurately. When the resulting curve of f , / fd  is substituted for the straight line (1.2) 
used by Lake & Yuen, rather better agreement with their data is obtained. 

2. The modulation frequency 
Consider a record ~ ( t )  of the sea surface elevation a t  some fixed horizontal position, 

say z = 0, as shown schematically in figure 1. The broken line represents the modulus 
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rle = JA(t)l of the envelope function, drawn so as to touch the dominant waves near 
to their crests. The envelope is in fact the smoothest such function (in a certain sense) 
which can be so drawn. We wish to find the mean frequency (in some sense) of the 
fluctuations of qe(t) .  

Now in the proposed model we regard ~ ( t )  as the result of modulating a uniform 
train of waves of finite amplitude, that is an unperturbed wave 

(2.1) 
- 7 = f (kx - ut) = x ai cosj(kx - ut)  

i 

with as real. Here x and t represent the horizontal co-ordinate and the time. To retrieve 
v( t )  we set x = 0. 

It is useful to consider the perturbations of 5 in a frame of reference moving with the 
phase-speed c = u/k. Then ?j itself becomes independent of the time: 

= f(kx‘) = ajcosjkxf, (2.2) 
i 

where xf = x - dt. It is further convenient to express ?j as a function of the velocity 
potential q5 in this relative motion, so that 

= F(q5) = c A j  cos ( j k + / c ) .  (2.3) 
j 

At a wave crest we take x’ = 0, q5 = 0 so the wave amplitude a is given by 

a =  x u i  + E A j .  (2.4) 

7 = ?f(q5) + ? I f ( # ,  t ) ,  

i i 

We now may express the elevation 7 in the form 

(2.5) 

where 7’ is a small perturbation of the basic wave 7. Squares and higher powers of 
7’ (but not 7) are neglected. It is relatively straightforward to  calculate the normal 
mode perturbations, which take the form 

(2.6) 7; = [Pn(q5) + iQn($)l e-iunt, 

where P, and Q, are real and imaginary parts of the complex amplitude function: n is 
a rational number characteristic of the particular normal mode; and 

u, = a,+i,O, (2.7) 

say. The real part a, gives the radian frequency of the normal mode, in the travelling 
reference frame, and the imaginary part ,On gives its e-folding rate of growth. 

The normal modes were calculated explicitly in Longuet-Higgins (1978). It was 
shown that in general we can write 

n = l /m,  (2.8) 

where 1 and m are integers, m denoting the number of wavelengths (in a horizontal 
direction) over which the particular mode is periodic. Thus m = 1, 1 2 1 corresponds 
to all the superharmonics having length scales equal to or less than the wavelength 
2~r/k, while m = 2 , l  = 2, for example, corresponds to all the subharmonics which are 
two wavelengths long; and so on. 

The values of 1 are assigned to each harmonic in such a way that the ratio n = l / m  
gives the number of maxima and minima of each harmonic at low values of ak;  positive 
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FIGURE 2. Real part of the radian frequency Q of normal-mode perturbations of deep-water 
gravity waves, aa a function of the wave amplitude ak (after Longuet-Higgins 1978). 
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FIGURE 3. Imaginary part of the radian frequency v (i.e. growth rate) of normal-mode instab- 
ilities of deep-water gravity waves, as a function of the wave amplitude ak (after Longuet- 
Higgins 1978). 
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FIGURE 4. Sketch of the surface elevation 7 of a perturbed train of waves as a function 
of the horizontal distance x. 

values of n correspond to modes propagated in the same sense as the unperturbed 
wave, negative values of n to modes propagated in the opposite sense. 

Some of the modes were connected analytically to more than one mode at low ak. 
For these it is necessary to define apair (or more) of wavenumbers, as in figure 3 below. 
Figures 2 and 3 respectively show the real and imaginary parts of u when m = 8, so 
1 = 8n. 

Now we need to obtain the envelope function ye ( t )  in the stationary frame of reference. 
To do this we sample y ( t )  a t  points near the crests q5 = NcL and at times t = NT,  
where N is an integer and T is the basic wave period, 

L = 2 n p ,  T = 2n/CTa. (2 .9 )  

Thus we consider the set of points 

~ ( N T )  = a + [P(NcL) + i&(NcL)]e-ignt, (2.10) 

where t = N7, as defining the wave envelope ye approximately (see figure 4). 
For example, when m = 2 and we consider odd harmonics (1  odd), P and Q will 

reverse sign when $ is increased by cL ( t  being fixed). In  other words, on spatially ad- 
jacent waves the perturbations are of opposite sign. Hence, as each crest passes the 
fixed point of observation (IL: = 0) the vector [P(NcL) +i&(NcL)] will be constant in 
magnitude but will alternate in sign; hence it will oscillate with radian frequency 
scad. Meanwhile the vector e-iunt will rotate with radian frequency a,. So the apparent 
frequency, in the stationary frame of reference, is (+ad-a,). The term &ad clearly 
represents a Doppler shift, compounded of the phase-velocity and the wavenumber 
4 of the basic disturbance. 

More generally, when the normal mode has two dominant components with wave- 
numbers n, and n2, say, the dominant spatial wavenumber will be An = &(nl-n2).  
For the unstable subharmonic modes shown in figure 3 we have 

8An = 1, 2, ..., 6. 

Clearly the ‘Doppler shift ’ is just equal to  cAn. From this it follows that in general the 
frequency of modulation in the stationary frame of reference is related to the basic 
frequency fd = 27md by 

(2.11) 

f e l f d  = A n - 4 u d .  (2.12) 
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8An An ak a n l o g  c,i/ffo anlad f J f a  
1.0 0.125 0.072 0.062 1.003 0.062 0.063 
2-0 0.250 0.155 0.118 1.012 0.117 0.133 
3.0 0.375 0.246 0.163 1.031 0-158 0-21 7 
4.0 0.500 0-309 0-198 1.049 0.189 0.31 1 
5-0 0.625 0.351 0.221 1.063 0.209 0.416 
6.0 0.700 0.382 0.231 1.075 0.215 0.635 

TABLE 1. Calculation of the modulation frequency f8 induced by the most unstable mode 

3. The most unstable mode 
To determine the frequency of the most unstable mode a t  any given wave steepness 

ak we may proceed as follows. 
In  figure 3, we have drawn with a broken line the envelope of the solid curves. 

No solid curve lies above this envelope. Therefore a t  a point of contact of the envelope 
with any particular curve the corresponding mode has the fastest rate of growth of any 
mode a t  that particular value of th6 steepness ak. To determine the corresponding 
modulation frequency a1 we now go to figure 2 and read off the value of Re (u) corres- 
ponding to that particular mode at the same value of ak. 

The resulting values of q/u0 for each of the unstable modes in figure 3 are shown in 
table 1. Here uo represents the radian frequency of infinitesimal waves (ak + 0). To 
obtain the ratio q/ud we must divide by the relative speed of waves of finite amplitude, 
which may be calculated, for example, from figure 1 of Longuet-Higgins (1975). 
Finally f e / f d  is found from equation (2.12). 

The figures in the final column have been used to draw the curve in figure 5, showing 
re/u, against ak. Also shown are the tangent at  the origin, representing equation (1.2), 
and a vertical line marking the amplitude of the most unstable wave which, from 
figure 3, is found to occur at a steepness ak = 0.32 approximately. It can be seen that 
for the lower part of the range of ak the corrected curve lies somewhat below the 
sloping line representing the Benjamin-Feir theory, but that it crosses this line at  
about ak = 0.30 and thereafter lies above the line. 

In  fact since the steepest waves in an irregular sea will exceed the average steepness 
by a factor of 1.5 or more (Longuet-Higgins 1952) we hardly expect to  find mean 
values of ak much above 0.3 and for those the corrected curve always lies below the 
Benjamin-Peir tangent. 

4. Comparison with observation 
In  figure 6 the theoretical curve representingf,/fd has been inserted in figure 13 of 

Lake & Yuen (1978), which includes the data derived from a wind-wave channel a t  
rather short fetches, It will be seen that the new curve agrees with the data better than 
the original theory, in so far as it goes more nearly through the centre of the cloud of 
observations. 

However, it  must be said, first, that the measurement of the envelope frequency f, 
from a typical record may be a somewhat subjective procedure and, second, that there 
is no obvious reason to prefer the mean wave amplitude EL as a parameter of the wave 
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FIGURE 5. The frequency of modulation of the wave envelope in a wave of initial 
amplitude a perturbed by the fastest-growing instability. 
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FIGURE 6. Ratio of the modulation frequency to the dominant wave frequency, accordng to the 
laboratory wind-wave date of Lake and Yuen (1978), compared to the most unstable 
modulation frequency. Broken line represents Benjamin & Feir’s (1967) theory. Solid curve 
represents present calculations. 0, UW = 15 ft s-l; 0, UW = 20 ft s-l; A ,  UW = 25 ft s-l; 
0. Uw = 30 ft s-l; V, Uw = 36 ft sP1. 

field rather than say the root-mean-square wave amplitude, which would be somewhat 
greater. 

Nevertheless one can state, on the evidence of figure 6 ,  that in the steepest waves 
encountered in these experiments the frequency of modulation was about 0.2 times 
the wave frequency, implying that in a very steep sea every fifth wave, on average, is 
the highest. And, further, that this is supported by our calculations. 

It must be emphasized that this would be the wave grouping as seen by an observer 
or wave recorder at the .fixed point x = 0, measuring the elevation as a function of 
the time. When seen in space, the wavenumber of the envelope would appear to be 
simply 

An = t (n,-n,) .  

For waves of low amplitude, and fairly long groups we have in deep water 

a, = Acr c $c An, (4.2) 
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since the group velocity equals half the phase velocity. Hence the wave groups appear 
twice as long in time as they do in space. 

The lower the waves, according to these ideas, the longer the groups of waves become, 
until the width of the spectrum ceases to be governed by the local nonlinear dynamics 
and is determined instead by other factors depending on the synoptic wind pattern 
and the path of wave propagation. 

For field measurements of ocean waves, the wave age, as given by the ratio c lU  
where U is wind-speed, is generally much greater than in the laboratory experiments 
reported by Lake & Yuen (1978). It appears that typically c / U  lies between 0.5 
and 1.5, and hence that ak, according to Sverdrup & Munk (1947) lies between 0.3 
and 0.05, but with the bulk of the observations corresponding to c /  U 2: 1.0, ak E 0.10. 
It will be interesting to see to what extent the observed values of f J f d  lie near the 
theoretical curve of figure 6. 

This paper was prepared during February 1979 while the author was a visitor in the 
Department of Engineering Sciences at the University of Florida, Gainesville, U.S.A. 
The author is indebted to  Dr K. Millsaps and other members of the Department for 
their kind hospitality and ‘assistance. 
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